a2 United States Patent

Hutton et al.

US009471537B2

US 9,471,537 B2
Oct. 18, 2016

(10) Patent No.:
45) Date of Patent:

(54) HYBRID PROGRAMMABLE MANY-CORE
DEVICE WITH ON-CHIP INTERCONNECT

(71) Applicant: Altera Corporation, San Jose, CA
(US)

(72) Inventors: Michael D. Hutton, Palo Alto, CA
(US); Anargyros Krikelis, Farnham
(GB)

(73) Assignee: Altera Corporation, San Jose, CA
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 707 days.

(21) Appl. No.: 13/804,419

(22) Filed: Mar. 14, 2013

(65) Prior Publication Data
US 2014/0281379 Al Sep. 18, 2014

(51) Int. CL

GOGF 3/00
GOGF 15/76
GOGF 15/78

(52) US.CL

CPC ... GOGF 15/76 (2013.01); GOGF 15/7867
(2013.01); Y02B 60/1207 (2013.01); YO2B
60/1225 (2013.01)

(2006.01)
(2006.01)
(2006.01)

(58) Field of Classification Search
CPC ettt GO6F 3/013
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,803,786 B1* 10/2004 Bilski GO6F 15/7867
326/38
7,157,934 B2* 12007 Teifel HO3K 19/17736
326/38

7,200,735 B2* 42007 Wang GO6F 9/30145
712/227

7,461,236 Bl 12/2008 Wentzlaff

7,746,862 Bl 6/2010 Zuk et al.

(Continued)

FOREIGN PATENT DOCUMENTS

CN 1591377 A 3/2005
CN 101373967 A 2/2009
CN 10190321 A 12/2010

OTHER PUBLICATIONS

Hauser et al., “Garp: A MIPS Processor with a Reconfigurable
Coprocessor” University of California, Berkeley, pp. 24-33 (Apr.
1997).

(Continued)

Primary Examiner — Cheng-Yuan Tseng
(74) Attorney, Agent, or Firm — Fletcher Yoder PC

(57) ABSTRACT

The present invention provides a hybrid programmable logic
device which includes a programmable field programmable
gate array logic fabric and a many-core distributed process-
ing subsystem. The device integrates both a fabric of pro-
grammable logic elements and processors in the same
device, i.e., the same chip. The programmable logic ele-
ments may be sized and arranged such that place and route
tools can address the processors and logic elements as a
homogenous routing fabric. The programmable logic ele-
ments may provide hardware acceleration functions to the
processors that can be defined after the device is fabricated.
The device may include scheduling circuitry that can sched-
ule the transmission of data on horizontal and vertical
connectors in the logic fabric to transmit data between the
programmable logic elements and processor in an asynchro-
nous manner.

22 Claims, 7 Drawing Sheets

US 9,471,537 B2
Page 2

(56)

2002/0064154
2002/0097679
2003/0062922
2003/0128050
2003/0172249
2004/0049613
2004/0158573
2005/0249185
2006/0179156
2007/0053356

References Cited

U.S. PATENT DOCUMENTS

Al
Al
Al
Al

5/2002
7/2002
4/2003
7/2003
9/2003
3/2004
8/2004
11/2005
8/2006
3/2007

Sharma et al.
Berenbaum
Douglass et al.
Schultz
Ganapathy et al.
Kim et al.
Bradley et al.
Poor et al.
Eatherton et al.
Konda

OTHER PUBLICATIONS

Hecht et al., “Dynamic Reconfiguration with Hardwired Networks-
on-Chip on Future FPGAs”, International Conference on Field
Programmable Logic and Applications, Aug. 24-26, 2005, pp.
527-530.

Kubisch et al., “Mapping a Pipelined Data Path onto a Network-
on-Chip,” Industrial Embedded Systems, SIES ’07, International
Symposium on IEEE, PI, Jul. 1, 2007, pp. 178-185.

Chinese Office Action for CN Application No. 201410092909.4
Mailed May 20, 2016; 12 Pages.

* cited by examiner

U.S. Patent Oct. 18, 2016 Sheet 1 of 7 US 9,471,537 B2

(CTD) P
o SN &
& T
oY -
<
@
e
- G
€£O
o
=
& .
A &
g;{ 0 Lh.
pose el
Li.
)
8 & -
o \\ o~
gt

FIG. 1A

U.S. Patent Oct. 18, 2016 Sheet 2 of 7 US 9,471,537 B2

A
F:3 y
4 E:
g 3 :)
4 S
- S G % i =T X
E-3 4
d <L L0 =L 0
4+
d <C 0 ‘ 1 =T 0
1N < m ennp— —l <€ m
—d <C 0 — =T m
E:
w
= E P
ok < (0 N % by
gk o =T £
i Sl
! ‘\‘ —d =T (D)
2 -)
< OO \
* 1 1 = 0
lz { # {
X L —i < £ oN) %
\ ' \ =L 0 .
, < \ '
(] — =< o L \ =
\ N \ | = =<
!‘ \\
' NG \
\\ o™~
\\ \\\
g N\
])
\ﬁ

U.S. Patent Oct. 18, 2016 Sheet 3 of 7 US 9,471,537 B2

150

300
FIG. 3

U.S. Patent Oct. 18, 2016 Sheet 4 of 7 US 9,471,537 B2

300

FIG. 4B

FIG. 4A

U.S. Patent Oct. 18, 2016 Sheet 5 of 7 US 9,471,537 B2

oo
iy

FIG. 5

U.S. Patent Oct. 18, 2016 Sheet 6 of 7 US 9,471,537 B2

x
O_———————
jo
% {»]
g & o
N ™
R
O................,
A3
f=
5
G

605

US 9,471,537 B2

Sheet 7 of 7

Oct. 18, 2016

U.S. Patent

g4 ©ld

suoiped
0/} 1588 1B B J0 SUO Ul SHIDIG
B0) PSIEICOSSE PUE siosseotd
pepeayi-iinu sy JO S1BlS
eamod sul sy ‘puBLIBp 10888004d
10 aunsesW pendiuiod eyl uo paseq

T
110 A

puBwap J08359004d
1O @ingeat 2U0 1S89] 18 aindwinn

)
geL

siusius oifio] sigewweibord
UJin DOIRIDOSER 84088200ud
SBPMOUL LoRRd UYIBS UIBISYM
‘aciaap oibo) sjgewiwesBord pugAy
2 jo susied om) 1589 . eindunsg

3
_/

DLL J—
064

o
hel

(%1

Vi ol

<

US 9,471,537 B2

1
HYBRID PROGRAMMABLE MANY-CORE
DEVICE WITH ON-CHIP INTERCONNECT

BACKGROUND OF THE INVENTION

The present invention relates to a hybrid programmable
logic device containing many programmable processors,
dedicated function blocks, and programmable FPGA fabric.
The present invention is particularly useful for network and
packet processing, although it may be used in other appli-
cations.

Many-core (i.e., multiple core) devices have provided a
way to increase performance of a device without incurring
the cost of increasing clock speeds. Many-core devices may
include dedicated ASIC blocks for hardware specific func-
tions, such as error control coding or cryptography. These
blocks are often referred to as hardware accelerators.

SUMMARY OF THE INVENTION

The present invention provides a hybrid programmable
logic device which includes a programmable field program-
mable gate array logic fabric (e.g., programmable logic
elements) and a many-core distributed processing subsystem
(e.g., many-core processors). It is noted that the term
“hybrid” refers to a device which integrates both a fabric of
programmable logic elements and processors in the same
device, i.e., the same chip. In the provided architecture, the
programmable logic elements may provide hardware accel-
eration functions that are “late binding,” meaning that the
specific functionality and logic architecture used to form a
hardware acceleration function can be defined after the
device is fabricated. For example, the programmable logic
elements may be partitioned or grouped into hardware
accelerators via software that programs the hybrid program-
mable logic device at runtime. It is also noted that the term
“device” refers to any embodiment or combination or
embodiments of a hybrid programmable logic device
described herein.

In certain embodiments, the processors may be integrated
into the programmable logic fabric such that one or more
physical dimensions of the processors, such as width, length,
or height, are a multiple of the same physical dimension (i.e.,
the corresponding length, width, or height) or the program-
mable logic elements. This allows for efficient assembly of
devices having different dimensions, with differing ratios of
processors to programmable logic elements or other logic
blocks. In certain embodiments, the processors may be
“hardened,” meaning that they consist of fixed logic ele-
ments rather than programmable logic elements. This fea-
ture provides the integration of powerful many-core proces-
sors into a programmable logic fabric. In certain
embodiments, the processors may be integrated into the
fabric such that they are tiled in rows or columns. It is noted
that the term “tiled” refers to arranging the processors such
that they are interleaved or interspersed among program-
mable logic elements. For example, the processors may be
arranged consecutively in a two dimensional plane with the
programmable logic elements such that there are no other
programmable logic elements between consecutive proces-
sors. This tiling of the processors may allow for efficient
fabrication and provisioning of interconnect networks for
communicating between the processors, programmable
logic elements, and I/O interfaces of the device.

In certain embodiments, the hybrid programmable logic
device may include a data bus to move data between the
processors, 1/O interfaces, and memory on and off chip. In

10

15

20

25

30

35

40

45

50

55

60

65

2

certain embodiments, this data bus may be “hardened”,
meaning that it consists of dedicated circuit components
rather than circuit components that can be reserved for other
uses on the device. This hardened data bus allows for high
performance data transfer both internal and external to the
device. In certain embodiments, this data bus may include
horizontal and vertical connectors. Certain groups of the
horizontal and vertical connectors may be wired to provide
data to and from programmable logic elements, while other
groups may be wired to provide data to and from the
processors. In certain embodiments, the horizontal and ver-
tical connectors in both groups may be in the same metal
layers or layers. These same metal layers may be located
above a layer in the interconnect stack in the device that
contains the processors and programmable logic elements.
In certain embodiments, the horizontal and vertical connec-
tors may be laid out such that their vertical pitch (e.g.,
vertical position in the interconnect stack) is a multiple of
the size of one or more groups of programmable logic
elements, processors, or both. Placing the horizontal and
vertical connectors for both the processor and programmable
logic elements in the same metal layer, and sizing them such
that they agree with the size of the programmable logic
elements and processors, allows for place and route tools
(e.g., software) to address the processors and logic elements
as a homogenous routing fabric. In other words, portions of
the connectors that route data to and from the processors
may be addressed in the same manner as the connectors that
route data to and from the programmable logic elements.

In certain embodiments, the hybrid programmable logic
device may include an ingress/egress processing block that
receives data (e.g., in the form of data packets), and forwards
that data to other elements of the device. In certain embodi-
ments, the device may include a network on chip bus which
is dedicated to routing and/or carrying the data to and from
the ingress/egress processing block to other elements of the
device. The ingress/egress processing block may be a hard-
ened ASIC, or may be a block built from the programmable
logic elements on the device.

In certain embodiments, the hybrid programmable logic
device may include scheduling circuitry that can schedule
the transmission of data on the horizontal and vertical
connectors in the logic fabric that transmit data between the
programmable logic elements and processors. In certain
embodiments, this scheduling circuitry may receive inter-
rupt messages addressed to at least one of the processors,
meaning that they contain information that indicate that the
payload of the data is meant to be processed by a particular
processor or processors. In other embodiments, the sched-
uling circuitry may use other methods of asynchronous
communication to send data between the programmable
logic elements and the processors. In certain embodiments,
the scheduling circuitry may identify which of the proces-
sors are meant to process a particular data (e.g., a block or
packet of data), and distribute the data to the identified
processors. By using interrupt messages or other asynchro-
nous methods of communication, the scheduling circuitry
may allow the processors, the programmable logic elements,
and the data bus to run at different clock speeds, thus
breaking any timing dependency between the network bus
and the processor clock speed.

In certain embodiments, the scheduling circuitry may
include a program instruction memory that can be repro-
grammed during operation of the processors. Each processor
may, via the scheduling circuitry, detect a new mode of
operation based on information in a received data packet,
halt operation in response to the detection of a new mode of

US 9,471,537 B2

3

operation (e.g., flush out all instructions in any pipeline in
the processor) and reprogram the program instruction
memory based on data received from other elements in the
device.

In certain embodiments, processors and programmable
logic may be divided into partitions in order to manage
power. For example, partitions of the hybrid programmable
logic device may be computed. Each partition may include
a subset of the processors and programmable logic elements.
At least one measure of processor demand may be com-
puted, and based on this measure the power state of the
processors and programmable logic elements in a partition
may be altered. This feature may allow the power consump-
tion of the device to be dynamically managed based on the
throughput to particular groups of processors and program-
mable logic elements.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other advantages of the invention will be
apparent upon consideration of the following detailed
description, taken in conjunction with the accompanying
drawings, in which like reference characters refer to like
parts throughout, and in which:

FIG. 1A is a hybrid programmable logic device in accor-
dance with an embodiment of the present invention;

FIG. 1B is an expanded view of the hybrid programmable
logic device containing processors adjacent to program-
mable logic elements in accordance with an embodiment of
the present invention;

FIG. 1C is an expanded view of the hybrid programmable
logic device containing an interface between the processors
and programmable logic elements in accordance with an
embodiment of the present invention;

FIG. 2A is an illustrative view of the data bus in the hybrid
programmable logic device in accordance with an embodi-
ment of the present invention;

FIG. 2B is another illustrative view of the data bus in the
hybrid programmable logic device in accordance with an
embodiment of the present invention;

FIG. 3 is a hybrid programmable logic device with a
hardened data bus and ingress/egress in accordance with an
embodiment of the present invention;

FIG. 4A is a hybrid programmable logic device with a
hardened data bus and ingress/egress in accordance with an
embodiment of the present invention;

FIG. 4B is a hybrid programmable logic device with a
hardened data bus and ingress/egress in accordance with an
embodiment of the present invention;

FIG. 5 is a hybrid programmable logic device with a
hardened data bus and ingress/egress in accordance with yet
another embodiment of the present invention;

FIG. 6 is scheduling circuitry in accordance with an
embodiment of the present invention;

FIG. 7Ais an illustration of a partitioned hybrid program-
mable logic device in accordance with an embodiment of the
present invention;

FIG. 7B is an illustrative process for reducing power
consumption of a hybrid programmable logic device in
accordance with an embodiment of the present invention.

DETAILED DESCRIPTION

When designing a many-core device, the type and number
of accelerators that are required for particular applications
may be hard to predict. To design a device that addresses
more than a single solution, it is common to build in

10

15

20

25

30

35

40

45

50

55

60

65

4

accelerators in the device that are unneeded, and thus waste
area on the device and consume excess power. It would
therefore be desirable to design a many-core device with
programmable logic technology such that the accelerators
could be defined at a later stage in the development process
(e.g., after deployment of the many-core device)

Further, when designing a many-core device, many agents
may request intermittent access to external memory. For
example, when the many-core device receives a packet, the
payload is split from the header and sent to external memory
(or internal buffer) while the header is sent to a processing
unit (e.g., a microprocessor or hardware block) for a large
amount of processing time (e.g., hundreds of clock cycles).
The resulting header, which is possibly modified, is then
rejoined with its payload and queued for forwarding off-
device. When hundreds of agents are sending and receiving
data, coordinating access to memory may be difficult. It
would therefore be desirable to design a many-core device
with a shared interconnect that allows for flexible routing
(e.g., dynamic routing as compared to static routing).

FIG. 1A is a hybrid programmable logic device 100 in
accordance with an embodiment of the present invention.
Device 100 includes regions of programmable logic ele-
ments 130, and processors 150. General purpose input/
output circuitry 110 can include one or more generic pins
that can be controlled or programmed by external software
at runtime. In certain embodiments, general purpose input/
output circuitry 110 can be configured to input or output
data, can read or write data, can be used as IRQs for wakeup
events, or can be used to transfer data from sources periph-
eral to device 100. High-speed serial interface 120 can
facilitate the transfer of information between external
sources of data (not shown), programmable logic elements
130, and processors 150 using high-speed transceiver
blocks. For example, high-speed serial interface 120 may
interface with an Ethernet connection to receive packets of
information, process these packets with programmable logic
elements 130 and processors 150, and switch the packets to
different physical interfaces. Exemplary circuitry for routing
received information is discussed below in connection with
FIG. 3. In certain embodiments, high-speed serial interface
120 may transfer data at much higher speeds than general
purpose input/output circuitry 110. For example, high-speed
serial interface 120 may read and write data at a rate of tens
of Gigabits per second, while general purpose input/output
circuitry 110 may write data at a rate hundreds of Megabits.
In certain embodiments, high-speed serial interface 120 may
operate at line-rate, meaning the aggregate throughput rate
of device 100 (e.g., 100 Gigabits per second across multiple
serial channels), while processors 150 and programmable
logic elements 130 operate at a distributed rate, meaning that
the aggregate throughput of processing threads (and corre-
sponding memories and hardware acceleration blocks used
with those processing threads) is no worse than the mini-
mum throughput for the target application of device 100.

Programmable logic elements 130 can include any com-
bination of logic gates and memory. In certain embodiments,
these programmable logic elements may be grouped into
logic array blocks (“LLABs”), referring to a unit of program-
mable logic resources in devices provided by Altera Corpo-
ration, of San Jose, Calif. However, the invention is appli-
cable to programmable logic elements from any source. In
certain embodiments, the programmable logic elements may
be grouped into hardware acceleration blocks. Each hard-
ware acceleration block may be designated to perform a
certain type of hardware event on received data. In certain
embodiments, the hardware acceleration blocks may be

US 9,471,537 B2

5

configurable such that the event is tailored to that particular
situation. For example, the hardware acceleration blocks can
accept parameters that further define the hardware event to
be performed on a received data packet. Parameters used to
configure a hardware acceleration block may, for example,
be generated by processors 150. Parameters can be trans-
mitted to the hardware acceleration blocks through a data
bus (not shown) that includes horizontal and vertical con-
nectors that are connected to each of the programmable logic
elements 130 as well as processors 150. In certain embodi-
ments, programmable logic elements 130 may include any
suitable memory clusters, such as M20K memory clusters.

In certain embodiments, the programmable logic elements
130 may be configurable into different hardware accelera-
tion blocks, after device 100 has been fabricated and
deployed (e.g., during runtime of device 100 or through a
remote update procedure). Thus, the hardware acceleration
blocks made up of the programmable logic elements 130
may be late binding, which allows device 100 to be versatile
in any number of applications in any number of domains.
For example, device 100 may be updated to account for the
latest error correction, video and image processing, or data
management standards. This is different from commercial
Network Processing Units, pipelined processors, and ASIC
devices that have both processor and fixed hardware accel-
eration blocks, as these devices do not allow for the hard-
ware accelerators to be defined after deployment.

As depicted schematically in FIG. 1A, there is more area
on device 100 devoted to programmable logic elements 130
than processors 150. This is because programmable logic
elements 130 are cheaper than processors 150. In certain
embodiments, programmable logic elements 130 may be
substantially similar to the programmable logic elements of
the Stratix V FPGA sold by Altera Corporation of San Jose,
Calif. However, it shall be understood that any program-
mable logic elements suitable for an FPGA or PLD may be
used as programmable logic elements 130.

Processors 150 can include any suitable number of pro-
cessors with many-core designs. These many-core designs
may be based on microprocessor IP by vendors such as
ARM, MIPS, and Tensilica. This microprocessor IP allows
for the ability to create customized embedded processors
(e.g., removing floating-point units), and customized
instruction set architectures. In certain embodiments, the
processors may be “hardened,” meaning that they consist of
fixed logic elements rather than programmable logic ele-
ments. This feature provides the integration of powerful
many-core processors into a programmable logic fabric.

As depicted schematically in FIG. 1A, processors 150 are
tiled in a four-column assembly structure in portions of the
device 100 where programmable logic elements 130 are not
present. In other embodiments, fewer or greater columns of
processors may be used. In certain embodiments, the num-
ber of columns or processors, and the number of processors
in each column may be more or less than depicted in FIG.
1A. The number of columns and number of processors 150
in each column may depend on the processor architecture for
each processor. For example, more processors may be tiled
on device 100 when the instruction cache and data cache of
each processor is reduced. In one example, MIPS 34K
multi-threaded processors with 16 KB of instruction cache
and data cache are used. In this example, when shrunk to a
design target of 28 mm, each processor consumes less than
0.25 square microns of silicon area on the device, which is
equivalent to 30 Stratix V LABs. It shall be understood that
processors 150 may alternatively laid out in rows on device
100.

10

15

20

25

30

35

40

45

50

55

60

65

6

In certain embodiments, processors 150 are multi-
threaded. Multi-threaded processors provide advantages to
applications where it is commonly required to interface with
an off-chip memory or lookup which could take multiple
clock cycles of processing time, and thus increase latency, or
to hide the latency of accelerator processing. For example,
by blocking one thread in a processor to this lookup task, the
processor is able to proceed with performing other func-
tions. In certain embodiments, the multi-threading may be
achieved by time-slicing operation on data received by the
processors 150. In other embodiments, the multi-threading
may be achieved by well-known operating system mecha-
nisms.

The tiled layout of processors 150 on the device allows for
efficient fabrication and provisioning of interconnect net-
works for communicating between the processors, program-
mable logic elements, and I/O interfaces of the device. This
is because the programmable logic elements 130 and other
elements of device 100 such as memory (not shown) are
separate from processors 150. In addition, the tiled layout of
processors 150 allows for the construction of processors 150
and programmable logic elements 130 in the same metal
layers in device 100, as well the construction of an inter-
connect stack containing a data bus.

FIG. 1B is an expanded view of the hybrid programmable
logic device 100 containing processors 150 adjacent to
programmable logic elements 130 in accordance with an
embodiment of the present invention. Two processors are
depicted schematically in FIG. 1B as squares containing
three components—processor core 170, instruction cache
180, and data cache 190. Also depicted schematically in
FIG. 1B are programmable logic elements 130 that are
grouped into LABs 132. In certain embodiments, the physi-
cal size of a dimension of the processors 150, such as length,
height, or width, is a multiple of the same dimension of the
programmable logic elements 150, or LABs made up of
programmable logic elements 150. For example, as depicted
in FIG. 1B, the width of each of the two processors is equal
to three LABs 132. This allows for efficient assembly of
devices having different dimensions, with differing ratios of
processors to programmable logic elements or other logic
blocks.

FIG. 1C is an expanded view of the hybrid programmable
logic device 100 containing an interface 161 between the
processors 150 and programmable logic elements 130 in
accordance with an embodiment of the present invention.
Interface 161 may be included between every LAB or row
of LABs and processors 150. Interface 161 may include
LIM/LEIM circuitry 162, interface logic 164, and interface
port 166. LIM/LEIM circuitry 162 refers to collections of
programmable input muxes “LAB Input Mux” and “Logic
Element Input Mux,” and may include any suitable number
of LIM and LEIM multiplexors as commonly found in
devices sold by Altera Corporation of San Jose, Calif.
Interface logic 164 may include any suitable circuit com-
ponents for buffering data to interface port 166. Interface
port 166 may include any suitable circuitry for physically
delivering signals to one of processors 150.

In certain embodiments, horizontal and vertical connec-
tors 167 may also be included on device 100. As will be
discussed below with respect to FIG. 3, horizontal and
vertical connectors 167 may transfer data between proces-
sors 150, programmable logic elements 120, general input/
output interfaces, and memory on and off chip. In certain
embodiments, horizontal and vertical connectors may be
wired to interface circuitry 161 such that any signal from any
of the programmable logic elements 130 can be delivered to

US 9,471,537 B2

7

interface port 166 via LIM/LEIM circuitry 162 and interface
logic 164. For example, multiplexors within the LIM/LEIM
circuitry 162 may choose which signal drives any global
wire in the horizontal/vertical connectors 167 to connect any
of the programmable logic elements 130 with processors
150.

FIG. 2A is an illustrative view of the data bus 210 in the
hybrid programmable logic device 100 in accordance with
an embodiment of the present invention. Although the wires
of data bus 210 are shown above the LABs 215 in the
vertical direction, in implementation they are part of an
interconnect stack which is above the LABs (e.g., in a metal
layer above the metal layers containing the LABs and
processors). Similar to horizontal and vertical connectors
167, data bus 210 can transfer data between processors 150,
programmable logic elements 130, general input/output
interfaces 110, and memory on and off the device 100 (FIG.
1A). FIG. 2A illustratively highlights two wires of data bus
210 routed from LLAB 216 of a particular spacing above
LABs 215. In certain embodiments, the horizontal and
vertical connectors of data bus 210 may be laid out such that
their vertical pitch (e.g., vertical position in the interconnect
stack, illustrated by ‘W’ in FIGS. 2A and 2B) is a multiple
of the size (e.g., the vertical pitch) of one or more groups of
programmable logic elements, processors, or both.

FIG. 2B is another illustrative view of the data bus 210 in
the hybrid programmable logic device 100 in accordance
with an embodiment of the present invention. As depicted
schematically in FIG. 2B, processor 217 is in place of LAB
216. Processor 217 may be part of a column of tiled
processors in the device, such as one of tiled processors 150
(FIG. 1A). In certain embodiments, the wiring of data bus
210 has the same vertical pitch and follows the same pattern
of the wiring of data bus 210 to LABs 215 and LAB 216. In
addition, in certain embodiments, both the wiring from
processor 217 and LABs 215 and LAB 216 are in the same
metal layer in the interconnect stack (e.g., in a metal layer
above the metal layers containing the [LABs and processors).
By placing the horizontal and vertical connectors for both
the processor and programmable logic elements in the same
metal layer, and sizing them such that they agree with the
size (e.g., vertical pitch) of the programmable logic elements
and processors, allows for place and route tools (e.g.,
software) to address the processors and logic elements as a
homogenous routing fabric. In other words, portions of the
connectors that route data to and from the processors (such
as processor 217) may be addressed in the same manner as
the connectors that route data to and from the programmable
logic elements (such as the programmable logic elements in
LABs 215 and LAB 216).

FIG. 3 is a hybrid programmable logic device 300 with a
hardened data bus 160 and ingress/egress processing block
136 in accordance with an embodiment of the present
invention. FIG. 4A is the same hybrid programmable logic
device 300 with a different hardened data bus 160 in
accordance with an embodiment of the present invention.
FIG. 4B is the same hybrid programmable logic device 300
with another different hardened data bus 160.

Device 300 also includes external memory 135 and
embedded ternary-content addressable memory (CAM)
memory 137. Hardened data bus 160 may consist of dedi-
cated circuit components that transfer data to and from
processors 150, programmable logic elements 130, ingress/
egress processing block 136, external memory 135, and
embedded ternary-CAM memory 137, rather than being
reserved for other uses on the device. In certain embodi-
ments, hardened data bus 160 may be referred to as a

20

25

30

35

40

45

50

55

8

network on chip interconnect. In such embodiments, hard-
ened data bus 160 may be dedicated to routing and/or
carrying the data to and from the ingress/egress processing
block to other elements of the device. Hardened data bus 160
can allow for high performance data transfer both internal
and external to the device. In certain embodiments, hardened
data bus 160 may include a portion of horizontal and vertical
connectors 167 (FIG. 1C) and data bus 210 (FIGS. 2A and
2B). In other embodiments, hardened data bus 160 may be
entirely separate from horizontal and vertical connectors
167.

Hardened data bus 160 may have a variety of topologies.
For example, hardened data bus 160 may have a ring
topology, a shared bus protocol such as AXI designed by
ARM holdings of Cambridge, United Kingdom, intercon-
nect technology from Sonics, Arteris or other third party
companies, or Avalon interconnect designed by Altera Cor-
poration of San Jose, Calif. In certain embodiments, hard-
ened data bus 160 may be hierarchical. For example, as
depicted schematically in FIG. 3, hardened data bus 160
may be a 4-way division. In another example, as depicted
schematically in FIG. 4A, hardened data bus 160 may be
monolithic. In yet another example, as depicted schemati-
cally in FIG. 4B, hardened data bus may be segmented.

In certain embodiments, portions of hardened data bus
160 may be connected or disconnected hierarchically by
software that can program device 300. This software may
include Quartus software design by Altera Corporation of
San Jose, Calif., or any other suitable software. In certain
embodiments, the bandwidth of hardened data bus 160 is
designed to achieve the line-rate of a particular application.
For example, if hardened data bus 160 is 64 bits and
operating at 1 GHz with 80% efficiency, it can provide 51
Gbps of bandwidth and be used to target a 50 Gbps stream-
ing video application. In another example, if hardened data
bus 160 is 64 bits and operating at 1.5 GHz with 80%
efficiency, it can provide 150 Gbps of bandwidth and target
an 100 Gb traffic switch application. In certain embodi-
ments, separate hardened data buses may be added to carry
data for processor input and output, as LAB input and
output.

In certain embodiments, hardened data bus 160 may be
placed over (e.g., in a metal layer above) or adjacent to
processors 150 and programmable logic elements 130. In
this manner, hardened data bus 160 is minimally invasive to
the assembly of device 300 (FIG. 3).

External memory 135 may include any suitable interface
to external memory, such as DDR memory. External
memory 135 can buffer data in applications where device
300 is processing video data or packet data. In certain
embodiments, embedded ternary-CAM memory 137 may
include any suitable block of content addressable memory,
which is useful for networking applications. In certain
embodiments, embedded ternary-CAM memory 137 may
interface with programmable logic elements 130 and pro-
cessors 150 using circuitry substantially similar to interface
circuitry 161 (FIG. 1C). In certain embodiments, ternary-
CAM memory 137 may be replaced by an SRAM or
embedded SRAM packet buffer memory.

Ingress/egress processing block 136 can receive data and
forward that data to other elements of device 300. For
example, ingress/egress processing block 136 can receive
data packets and provide protocol termination or packet
framing services to device 300. In certain embodiments,
ingress/egress processing block 136 may forward received
data to hardened data bus 160. In certain embodiments, the
ingress/egress processing block may consist of hardened

US 9,471,537 B2

9

ASIC blocks. These blocks may be structured according to
the ASIC blocks disclosed in U.S. Pat. No. 8,314,636, which
is incorporated by reference herein in its entirety. In certain
embodiments, ingress/egress processing block may be built
from programmable logic elements 130.

FIG. 5 is a hybrid programmable logic device 500 with a
hardened data bus 160 and ingress/egress 137 in accordance
with yet another embodiment of the present invention.
Device 500 may be substantially similar to device 100 (FIG.
1A) and device 300 (FIG. 3), except that a universal inter-
face bus 138 is integrated into device 500 for interfacing to
2.5D or 3D memory, or other functions. As schematically
illustrated in FIG. 5, interface 138 can be connected to
processors 150 and programmable logic elements 130 via
hardened data bus 160. In other embodiments, interface 138
can be connected to processors 150 and programmable logic
elements 130 through general-purpose FPGA routing, such
as horizontal and vertical connectors 167 (FIG. 1C). In
certain embodiments, interface 138 may be manufactured
according to the design and methods described in U.S.
patent application Ser. Nos. 13/350,662 and 13/620,126,
which are incorporated by reference herein in their entirety.

FIG. 6 is scheduling circuitry 600 in accordance with an
embodiment of the present invention. Scheduling circuitry
600 includes data bus 605, which can be substantially
similar to horizontal and vertical connectors 167 (FIG. 1C),
or hardened data bus 160 (FIG. 3). Scheduling circuitry 600
can schedule the transmission of data on the horizontal and
vertical connectors, hardened data bus, between program-
mable logic elements such as programmable logic elements
130 and processor 630. In certain embodiments, processor
630 may be part of a column of tiled processors, such as
those described with respect to processors 150 (FIG. 1A). In
such embodiments, copies of scheduling circuitry 600 may
be integrated with every processor in processors 150.

Scheduling circuitry 600 includes bus interface 610 and
threading circuitry 620. In certain embodiments, scheduling
circuitry may also include processor 630 and cache 640.
Processor 630 may be substantially similar to processors 150
(FIG. 1A), and cache 640 may be substantially similar to
instruction cache 180 and data cache 190. In addition,
processor 630 may be part of a tiled column or row of
processors, such as that discussed with respect to processors
150 (FIG. 1A). In such embodiments, scheduling circuitry
600 may be implemented on the device for every processor
in the tiled rows or columns of processors.

Horizontal and vertical connectors 605 may transmit data
to and from bus interface 610. Horizontal and vertical
connectors 605 may be part of at least a portion of horizontal
and vertical connectors 167, hardened data bus 160, or both.
In certain embodiments, bus interface 210 may transmit data
to and from programmable logic elements on a device and
processors on a device using horizontal and vertical con-
nectors 605. For example, bus interface 210 may transmit
data between programmable logic elements 130 of device
100 and processor 630 using horizontal and vertical con-
nectors 167. In certain embodiments, the transmission of
data between the programmable logic elements and the
processors may occur at a rate of speed different, or asyn-
chronous from, the rate of speed of the clock of processor
630. For example, the speed of the operation of the processor
may be faster or slower than the speed of operation of the
programmable logic elements on the device, and the rate of
speed at which data is transmitted between the program-
mable logic elements and processor using horizontal and
vertical connectors 605 may be different than the speed of
the clock of processor 630.

20

25

40

45

10

In such embodiments, bus interface 610 may provide
mechanisms that allow data to be transmitted on the hori-
zontal and vertical connectors 605 at a rate asynchronous
with respect to the speed of the clock of processor 630. In
certain embodiments, bus interface 610 may receive inter-
rupt messages over horizontal and vertical connectors 605.
In such embodiments, these interrupt messages may be
addressed to one or more of the processors on the device,
meaning that they contain information that indicate that the
payload of the data associated with the messages is meant to
be processed by a particular processor or processors. Bus
interface circuitry 610 may transmit only the data associated
with interrupt messages that are addressed to processor 630,
and ignore other messages that are not addressed to proces-
sor 630. For example, bus interface circuitry 610 may
contain a predetermined or hardcoded value, either in soft-
ware or hardware associated with bus circuitry 610, that is
the address of processor 630. Bus interface circuitry 610
may periodically or constantly monitor the messages trans-
mitted over horizontal and vertical connectors 605 for the
address. When the address is detected, bus interface circuitry
610 may buffer data associated with the message addressed
to processor 630, and transmit the data from the buffer to
processor 630 using threading circuitry 620. Threading
circuitry 620 maintains one or more program counters
associated with the execution of various tasks in processor
630. In certain embodiments, threading circuitry 620
receives data from bus interface circuitry 610, and deter-
mines the appropriate time to send that data to processor 630
based on one or more of the program counters that it
maintains. In this manner, scheduling circuitry 600 may
allow the processors, programmable logic elements, and the
data bus of a device to operate at different clock speeds, thus
breaking any timing or clock dependency between the
components tied to the network bus and the processor clock
speed.

In certain embodiments, any suitable methods of asyn-
chronous communication may be used to send data between
the programmable logic elements of the device and proces-
sor 630. In certain embodiments, the functionality of sched-
uling circuitry 600 may be achieved by groups of two or
more processors rather than scheduling circuitry 600. These
groups of processors may identify which of the processors to
send data received from the horizontal and vertical conduc-
tors of the device (i.e., transmitted from the programmable
logic elements), and distribute the data to the identified
processors. This identification may be determined similar to
the monitoring procedure described above with respect to
bus interface circuitry 610.

In certain embodiments, scheduling circuitry 600 may
include a program instruction memory (not shown), which
can include any suitable combination of external memory. In
certain embodiments, the instruction set of the processors on
the device, such as processor 630, may be modified during
operation such that they are reprogrammed with a new
instruction set. This new instruction set may allow the
device to achieve new or different functionality, such as
program instructions for a hardware accelerator that may be
used by the processors.

In such embodiments, the program instruction memory
may detect a new mode of operation for one or more of the
processors. For example, the program instruction memory
may contain instructions for monitoring data packets on the
horizontal and vertical connectors 605. Certain data packets,
which can be identified by their packet header, may contain
a control packet that contains instructions for reprogram-
ming processor 630 with new or updated functionality. Bus

US 9,471,537 B2

11

interface circuitry 610 may detect these control packets by
monitoring horizontal and vertical connectors periodically
or continuously to match the control packet headers. In
response to the detection of a new mode of operation, the
operation of processor 630 may be halted. For example,
once bus interface circuitry 610 detects a control packet
header, it may buffer the payload data of that packet and
transfer the payload data to threading circuitry 620. Thread-
ing circuitry 620 may then perform one or more of the
creation, execution, or insertion instructions in the threads or
pipeline of processor 630 that cause processor 630 to halt
operation, and flush out all pending instructions. Threading
circuitry 620 may then transfer the payload of the control
packet that contains the instructions for reprogramming
processor 630 from a buffer in bus interface circuitry 610 to
processor 630. In certain embodiments, information in the
header of the control packet may target a group of proces-
sors, such as a group of processors in one or more tiled
columns on the device. In such embodiments, the process
described above may occur substantially in parallel for each
of the targeted processors on the device using each proces-
sor’s associated bus interface circuitry.

In certain embodiments, the processors on the device may
be divided into different classes via partitioning. This par-
titioning may be physical (e.g., hard-coded in the processor),
or virtual (e.g., assigned via a record kept by scheduling
software) FIG. 7A is an illustration of a partitioned hybrid
programmable logic device 100 in accordance with an
embodiment of the present invention. Device 100 may be
substantially similar to that described with respect to FIG.
1A. Device 100 may be partitioned into a first partition 702,
second partition 704, and third partition 706. These parti-
tions may be designated by place and route tools, or any
suitable software. In certain embodiments, the partitions
may be designated by a table that maps each of the proces-
sor’s addresses or other unique identifiers with a partition
number. In certain embodiments, the partitions of processors
may also be associated with a partition of the programmable
logic elements of device 100. It shall be understood that
while FIG. 7A shows three partitions, the processors on
device 100 may be divided into any suitable number of
partitions in any suitable geometry on the device.

Each partition 710, 720, and 730 may be associated with
a different class of processor and programmable logic ele-
ments. In certain embodiments, these classes may be used to
implement alternative processing models via different types
of processing. In such embodiments, each partition may be
associated with a different processing or hardware accelera-
tion function. For example, the processors associated with
first partition 702 may be designated to handle flow identi-
fication processing, the processors associated with second
partition 704 may be designated to handle initial packet
processing and distribution, and the processors associated
with third partition 706 may be designated to handle system
or device-wide state processing. In this manner, device 100
may be configured to handle any number of applications.
The use of device 100 in packet processing applications is
further illustrated and discussed in U.S. patent application
Ser. No. 13/804,419, titled “Mapping Network Applications
To A Hybrid Programmable Many-Core Device”, filed con-
currently herewith, which is incorporated by reference
herein in its entirety.

In certain embodiments, the different classes of proces-
sors and programmable logic elements may be used to
manage power usage of device 100. For example, processors
and programmable logic elements associated with partitions
of device 100 may be powered up and down dynamically

10

15

20

25

30

35

40

45

50

55

60

65

12

based on the demand for the processing capabilities of the
processors and logic elements associated with each partition.
This process is described with respect to FIG. 7B below.

In certain embodiments, processors and programmable
logic elements associated with one or more partitions of
device 100 may be designated as housekeeper processors.
These housekeeper processors may implement functions
such as power and clock management on behalf of device
100. In certain embodiments, these housekeeper processors
may be designated by the user of place and route tools. In
other embodiments, these housekeeper processors may be
designated by device 100 automatically during runtime of
device 100.

FIG. 7B is an illustrative process 700 for reducing power
consumption of a hybrid programmable logic device, such
as device 100 (FIGS. 1A and 7A), in accordance with an
embodiment of the present invention. Process 700 begins at
step 710. At step 710, at least two partitions of the device are
computed, each partition including processors associated
with programmable logic elements. Each of these two par-
titions may be substantially similar to partitions 702, 704,
and 706 discussed with respect to FIG. 7A. In certain
embodiments, the partitions may be computed by place and
route software before operation of the device. In other
embodiments, the partitions may be computed by scheduling
software during the operation of the device. This scheduling
software may be executed on a host processor external to the
device, or on designated housekeeper processors. In such
embodiments, the scheduling software may change the
partitions dynamically during the operation of the device.
For example, at a first time the scheduling software may
designate a first partition associated with 40% of the pro-
cessors and associated programmable logic elements that are
actively being used for hardware acceleration functions, and
a second partition associated with 60% of the processors and
associated programmable logic elements that are not
actively being used. Then, at a subsequent time, after more
of the processors and programmable logic elements have
become active, the scheduling software may designate a first
partition associated with 55% of the processors and pro-
grammable logic elements that are actively being used for
hardware acceleration, and a second partition associated
with 45% of the processors and associated programmable
logic elements that are not actively being used. In this
manner, the device can actively adjust its power usage based
on throughput of the device. In certain embodiments, the
partitions may be associated with a “top half” and “bottom
half” of the processors and associated programmable logic
elements. In such embodiments, scheduling software may
designate the partition associated with the “bottom half” of
the resources in the device in a power savings mode while
the partition associated with the “top half” of the resources
in the device may be designated for an active mode. In
certain embodiments, the partitions may be computed by
determining what hardware acceleration functions are being
executed by a processor or group of processors, and then
designating those processors and the programmable logic
elements associated with executing a particular hardware
acceleration function as a single partition.

Process 700 may proceed to step 720. At step 720, at least
one measure of processor demand is computed. In certain
embodiments, these measures of processor demand may be
computed for each partition computed at step 710. In certain
embodiments, a measure of processor demand may be
computed by the scheduling software. In certain embodi-
ments, the measure of processor demand may be computed
by determining the number of received data packets that are

US 9,471,537 B2

13

waiting (e.g., in a queue) to be processed by a processor or
a group of processors (e.g., all of the processors in a
particular partition). In one embodiment, if a processor or
group of processors have not received data packets for a
predetermined period of time (e.g., because the processors
and associated programmable logic elements perform a
hardware acceleration function that is not being used), the
processor or group of processors may be designated as
unneeded, and marked for powering down as will be dis-
cussed with respect to step 730 below. In this manner,
processors which are no longer needed for their processing
power are figuratively “laid off” from performing their job
on device 100. In the same embodiment, if data packets are
subsequently received for the processor or group of proces-
sors marked as idle, those data packets may be queued and
the processor or processors may be designated as active and
marked for powering on as will be discussed with respect to
step 730 below. In this manner, idle processors which are
needed again are figuratively hired back to performing their
job on device 100. In another embodiment, if a processor or
group of processors have received a number of data packets
below a predetermined threshold, the processor or group of
processors may be designated as unneeded, and marked for
powering down as will be discussed with respect to step 730
below.

Process 700 may then proceed to step 730. At step 730,
the power state of the processors and associated program-
mable logic blocks in the partitions may be altered based on
the measure of processor demand computed at step 720. In
certain embodiments, the power state of a partition may be
altered by powering down the resources of the device
allocated to that partition. For example, if processor demand
is calculated for a particular partition as being less than a
threshold number of received data packets, then the proces-
sors or groups of processors and associated programmable
logic elements of that partition may be powered down. In
certain embodiments, resources within a partition may be
powered down by disabling the clock signal provided to
those resources. In certain embodiments, the power state of
a partition may be altered by powering up the resources of
a partition that was previously powered down or is dormant.
For example, if the device determines that the resources in
a particular partition that is powered down are needed to
execute a new or scheduled hardware acceleration function,
or that data packets are currently being received that call for
resources associated with a hardware acceleration function
that were previously powered down, then the resources
within that partition may be powered up. In certain embodi-
ments, resources within a partition may be powered up by
enabling the clock signal provided to those resources.

It will be understood that the foregoing is only illustrative
of the principles of the invention, and that various modifi-
cations can be made by those skilled in the art without
departing from the scope and spirit of the invention. One
skilled in the art will appreciate that the present invention
can be practiced by other than the described embodiments,
which are presented for purposes of illustration and not of
limitation, and the present invention is limited only by the
claims that follow.

What is claimed is:

1. A hybrid programmable logic device, comprising:
programmable logic elements, at least some of which
provide at least one hardware acceleration function;
processors interleaved with the programmable logic ele-

ments and physically sized such that one physical

20

25

30

40

45

60

65

14

dimension of each of the processors is equal to a
multiple of a same physical dimension of the program-
mable logic elements; and
first intersecting horizontal and vertical connectors that
provide data to and from the programmable logic
elements, the processors or any combination therein;

wherein the vertical pitch of the intersecting horizontal
and vertical connectors is a multiple of a vertical pitch
of at least one of the programmable logic elements of
the processors.

2. The device of claim 1, wherein each of the processors
consists of fixed logic elements.

3. The device of claim 1, wherein the first horizontal and
vertical connectors are in a first metal layer of a wiring of the
hybrid programmable logic device.

4. The device of claim 1, wherein the processors are
arranged in one of columns or rows.

5. The device of claim 1, wherein the physical dimension
is one of length, width, or height.

6. The device of claim 1, wherein the first horizontal and
vertical connectors are addressable as a homogeneous rout-
ing fabric to provide data to and from the processors and
programmable logic elements.

7. The device of claim 1, wherein the first horizontal and
vertical connectors only provide data to and from the
processors and programmable logic elements.

8. The device of claim 7, further comprising an ingress/
egress processing block that receive data packets and route
them to the first horizontal and vertical connectors.

9. The device of claim 8, further comprising an external
memory configured directly connected to the hybrid pro-
grammable logic device, wherein the external memory buf-
fers the received data packets.

10. The device of claim 8, further comprising a network
on chip bus, operable only to carry the data packets to and
from the ingress/egress processing block.

11. The device of claim 8, wherein the ingress/egress
processing block consists of at least one of a dedicated
application-specific integrated circuit (ASIC), or a group of
the programmable logic elements.

12. The device of claim 3, further comprising a second
metal layer containing the programmable logic elements and
processors.

13. The device of claim 1, wherein the programmable
logic elements change the at least one hardware acceleration
function.

14. A hybrid programmable logic device, comprising:

programmable logic elements arranged in tiles that oper-

ate at a first clock speed, wherein at least some of the
programmable logic elements provide at least one
hardware acceleration function;

processors arranged in columns and interleaved with the

programmable logic elements that operate at a second
clock speed asynchronous with respect to the first clock
speed, wherein each of the processors consists of fixed
logic elements;

intersecting horizontal and vertical connectors that pro-

vide data between the programmable logic elements
and processors; and

scheduling circuitry that transmits data on the horizontal

and vertical connectors between the programmable
logic elements and processors at a rate asynchronous
with respect to the second clock speed.

15. The device of claim 14, wherein the scheduling
circuitry receives interrupt messages addressed to at least
one of the processors.

US 9,471,537 B2

15

16. The device of claim 14, where a group of the proces-
sors comprises circuitry that processes data transmitted
between the programmable logic elements and processors
to:

identify which of the processors to send the data; and

distribute the data to the identified processors.

17. The device of claim 14, wherein the scheduling
circuitry further comprises a program instruction memory
that contains a program instruction set that:

detects a new mode of operation for a group of the

processors;

in response to the detection of a new mode of operation,

halts operation of the processors in the group;
receives data from the programmable logic elements; and
stores instructions in the program instruction memory
based on the received data.

18. A method of initializing and operating a hybrid
programmable logic device comprising processors inter-
leaved with programmable logic elements, the method com-
prising:

computing at least two partitions of the hybrid program-

mable logic device, wherein each partition comprises a
subset of the processors and the programmable logic
elements, wherein at least some of the programmable
logic elements are programmable to provide at least
one hardware acceleration function;

computing at least one measure of processor demand for

each of the at least two partitions; and

based on the computed measure of processor demand,

altering the power state of the processors and program-
mable logic elements in at least one of the at least two
partitions;

10

15

20

25

30

16

wherein the programmable logic device, the program-
mable logic elements or any combination thereof
exchange data with intersecting horizontal and vertical
connectors.

19. The method of claim 18, wherein altering the power
state of the processors and programmable logic devices
consists of one of disabling clock circuitry associated with
the processors and programmable logic elements, or pow-
ering down the processors and programmable logic circuits.

20. The method of claim 18, wherein computing the
measure of processor demand further comprises:

computing a number of received data packets designated

for the processors in each of the partitions of the hybrid
programmable logic device; and

determining whether the number of received data packets

is below a predetermined threshold.

21. The method of claim 18, wherein computing measure
of processor demand further comprises

determining that data packets have not been received by

the processors in a partition of the hybrid program-
mable logic device for a predetermined period of time.

22. The method of claim 18, wherein computing at least
two partitions of the hybrid programmable logic device
comprise:

determining hardware acceleration functions used by the

processors; and

based on the determination, generating a partition that

includes the processors and programmable logic ele-
ments associated with the hardware acceleration func-
tions.

